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Problem 1 Two firms simultaneously decide whether to enter a market. Firm i′s
entry cost is ci ∼ [0,∞), and this is private information to firm i. Parameters ci
are drawn independently from a distribution with a strictly positive density f(·).
Firm i has payoff Πm − ci if i is the only firm to enter and Πd − ci if both firms
enter. Not entering yields a payoff 0. Assume that Πm > Πd > 0.

a) Formulate the game as a Bayesian game.

Solution. The game is Γ = 〈N, {Ai} , {Θi} , {pi} , {si} , {ui}〉, where
N = {1, 2} is the set of players (the two firms),
{Ai} = {A1,A2} is the collection of action sets where Ai = {enter,not enter},
{Θi} = {Θ1,Θ2} is the collection of type sets (entry costs) where Θi = [0,∞),
{pi} = {p1,p2} is the collection of beliefs on types where pi = f (·),
{si} = {s1, s2} is the set of strategies si : Θi → Ai; and
{ui} = {u1,u2} is the set of payoff functions such that

ui
(
ai,aj; ci, cj

)
=


Πm − ci, if ai = enter, aj = not enter;
Πd − ci, if ai = enter, aj = enter;
0, whenever ai = not enter.

We can write the payoff matrix of this game as

Enter Not enter
Enter Πd − c1,Π

d − c2 Πm − c1, 0

Not enter 0,Πm − c2 0, 0

b) Find the Bayesian Nash equilibrium of the game. Can you show that
it is unique?

Solution. A Bayesian Nash equilibrium is a pair of strategies
(s1 (c1) , s2 (c2)) such that si (ci) Ecj(ui(ai,aj; ci, cj)) > Ecj(ui(a

′
i,aj; ci, cj) for all a ′i ∈

Ai for both firms 1 and 2.



The expected payoff from choosing si (ci) = enter is

Ecj
[
ui
(
enter,aj; ci, cj

)]
= Pr

[
sj
(
cj
)
= enter

] (
Πd − ci

)
+ Pr

[
sj
(
cj
)
= not enter

]
(Πm − ci) ,

which is a decreasing function of ci.
The expected payoff from choosing si (ci) = not enter equals zero and

is independent of ci. Thus, there is a cutoff strategy c? such that si (ci) =
enter if ci 6 c? and si (ci) = not enter if ci > c?. When ci = c∗, firm i is
indifferent between entering and not entering, that is

(
Πd − c∗

)
Pr(cj 6 c

∗) + (Πm − c∗)Pr(cj > c
∗) = 0

⇔
(
Πd − c∗

)
F (c∗) + (Πm − c∗) [1− F (c∗)] = 0

⇔ ΠdF (c∗) + Πm [1− F (c∗)] − c∗ = 0

or F (c∗) =
Πm − c∗

Πm − Πd
, (1)

where F (·) denotes the cumulative distribution function of f (·).
The left-hand side of equation (1) is monotonically increasing, whereas
the right-hand side of (1), denoted by RHS (c), is monotonically de-
creasing in c. Furthermore, F (0) = 0 < RHS (0) = Πm

Πm−Πd
and

F (∞) = 1 > RHS (∞) = −∞, and hence the left- and right-hand schedules
must intersect exactly once. Thus, there is a symmetric equilibrium such
that firm i enters if ci 6 c∗ and does not enter otherwise. Further, the
cutoff strategy c∗ is defined by equation (1).

What it comes to uniqueness, we have shown that the solution above is
unique symmetric equilibrium. Hence, what is left to solve is the possible
existence of asymmetric equilibria with own cutoff points c∗i for each i ∈
{1, 2}. Any asymmetric equilibrium with cutoff costs (c∗

1
, c∗

2
) must satisfy

F (c∗1) =
Πm − c∗

2

Πm − Πd
and F (c∗2) =

Πm − c∗
1

Πm − Πd

or c∗i = Π
m −

(
Πm − Πd

)
F(Πm −

(
Πm − Πd

)
F (c∗i )), (2)

for i ∈ {1, 2}. If there is a unique solution to (2), then the equilibrium is
unique.



c) Analyze the game assuming that the firms make their entry decisions
sequentially (say, firm 1 enters first and firm 2 decides about entry
after observing firm 1’s decision)

Solution. Let player 1 be the one that moves first. Let’s try to find
the equilibrium of the game by solving it by backward induction. There
are two decision nodes for player 2. In the one in which player 1 has not
entered, player 2 will enter if c2 6 πm. In the one in which player 1 has
entered: player 2 will enter if c2 6 πd. So player 1 will enter if c1 6 Pr(c2 6
πd)πd + (1− Pr(c2 6 πd)πm = F(πd)πd + (1− F(πd))πm.

Problem 2 Two partners must dissolve their partnership. Partner 1 currently
owns share s of the partnership, partner 2 owns share 1− s. The partners agree to
play the following game: Partner 1 names a price p, and partner 2 then chooses to
buy 1’s share for ps or sell his share for p (1− s). Suppose it is common knowledge
that the partners’ valuations from owning the whole partnership are independently
and uniformly distributed on [0, 1], but each partner’s valuation is private infor-
mation. Formulate the game as a Bayesian game and find the perfect Bayesian
equilibria.

Solution. The game is Γ = 〈N, {Ai} , {Θi} , {Fi} , {si} , {ui}〉,
N = {1, 2},
{Ai} = {A1,A2}, where A1 = [0,∞) and A2 = {buy, sell},
{Θi} = {Θ1,Θ2}, where Θi = [0, 1],
{Fi} = {F1, F2}, where Fi is the uniform distribution,
{si} = {s1, s2}, where s1 : Θ1 → A1 and s2 : Θ2 → AA1

2
, and

{ui} = {u1,u2}, where

u1 (p,a2; v1, v2) =

{
ps

(v1 − p) (1− s) + v1s

if a2 = buy,
if a2 = sell.

and

u2 (p,a2; v1, v2) =

{
(v2 − p) s+ v2 (1− s)

p (1− s)

if a2 = buy,
if a2 = sell.

To find the perfect Bayesian equilibria, suppose Partner 1 names a price
p, Partner 2 buys (sells) if

v2 > (<)p.



Thus,

a∗2 (p; v2) =

{
buy

sell

if v2 > p,
if v2 < p.

Given that, Partner 1 chooses p ∈ [0,∞) to maximize

∫
1

0

u1 (p,a
∗
2
(v2) ; v1, v2)dF (v2)

=

∫p
0

u1 (p, sell; v1, v2)dv2 +

∫
1

p

u1 (p,buy; v1, v2)dv2

=

∫p
0

((v1 − p) (1− s) + v1s)dv2 +

∫
1

p

psdv2

= ((v1 − p) (1− s) + v1s)p+ p (1− p) s

The first order condition is

−(1− s)p+ (v1 − p) (1− s) + v1s+ (1− 2p) s = 0.

Thus,
a∗1 (v1) =

v1 + s

2
.

Problem 3 Consider private provision of public goods with incomplete informa-
tion. Each player has a private cost θi ∈ [0, 2] of providing the public good. Sup-
pose that costs are independent and uniformly distributed. The aim of this excercise
is to find a symmetric perfect Bayesian equilibrium of a twice repeated version of
the game. The payoffs per period are:

Contribute Do not contribute
Contribute 1− θ1, 1− θ2 1− θ1, 1

Do not contribute 1, 1− θ2 0, 0

a) Assume first that the game is played only once, and the players
choose simultaneously whether or not to contribute. Find the
Bayesian equilibrium of the game.

Solution. Using similar reasoning as in problem 1, we already know
that there should be a cutoff �θ < 1 for which the players are indifferent
between contributing and not given their prior information. Let’s find this
cutoff by writing payoffs for player j given that i uses this cutoff. Utility



from contributing is 1 − θj. Utility from not contributing is Pr(θi 6 �θ).
Equating these and setting θj = �θ gives:

1− �θ = Pr(θi 6 �θ) =
�θ

2
⇐⇒ �θ =

2

3
.

b) Consider next the case where the game is repeated twice. The players
first choose simultaneously whether or not to contribute in the first
period. Then, after observing each others’ actions, they choose simul-
taneously whether or not to contribute in the second period. Both
players maximize the sum of payoffs over the two periods. Define
the strategies in the game.

Solution. The possible outcomes in the first period are CC (both con-
tributed), CD (1 contributed, 2 did not), DC (1 did not contribute, 2 did)
and DD (neither contributed). The strategies need to define the probability
of contributing for each θi ∈ [0, 2] for the first period and for the second
period. We are going to use behavior strategies. Let’s denote first period
probability of contributing by σ(θi). That is σ(θi) is a mapping from [0, 2]

onto [0, 1]. The second period participation is conditional on the past play:
σi : Θi × {C,D}2 → [0, 1]. These action probabilities are mappings from
beliefs conditional on past play to [0, 1].

c) Argue that if there is a symmetric equilibrium strategy profile, then
there must be some cutoff type θ̂ ∈ (0, 1) such that i contributes in the
first period if and only if θi 6 θ̂.

Solution. Let’s write down the expected utilities from contributing and
not contributing. Let the probability that the other player contributes in
the first period be ρ. Let ρCC, ρCD, ρDC and ρDD be defined similarly as
probabilities that the other player contributes in the second period given
the history. Utility from contributing in the first period:

EU(C, θi) = 1− θi + ρmax{1− θi, ρ
CC}+ (1− ρ)max{1− θi, ρ

CD}.

The first part of the expression is the first period’s utility, while in the
second period player i gets the higher of 1 − θi or ρh, where ρh depends
on whether the other player contributed in the first period or not.



Utility from not contributing is:

EU(D, θi) = ρ+ ρmax{1− θi, ρ
DC}+ (1− ρ)max{1− θi, ρ

DD}

Taking the difference of these two gives

EU(C, θi) − EU(D, θi) =

1− θi + ρmax{1− θi, ρ
CC}+

(1− ρ)max{1− θi, ρ
CD}− ρ− ρmax{1− θi, ρ

DC}− (1− ρ)max{1− θi, ρ
DD}.

To show that there is some cutoff type �θ ∈ (0, 1), we need to show that
EU(C, θi) − EU(D, θi) equals zero for some θi ∈ (0, 1) (i.e. for the cutoff
type) and that it is decreasing in θi (i.e. types lower than �θ want to partic-
ipate). The first part means that there is a type who is indifferent between
contributing or not and the second part implies that types below that type
will want to contribute and types above will not want to contribute.

Let’s first show that h(θi) := EU(C, θi) − EU(D, θi) is decreasing in θi.
Although,h(θi) is not differentiable everywhere (at most at four different
points), but where it is its derivative with regards to θi is at most 0. To see
this note that the derivative of the first term is always -1 and only the last
two terms, ρmax{1− θi, ρDC}, (1− ρ)max{1− θi, ρDD} can have a positive
sign. As these terms add up to at most to 1, the derivative is at most 0
(p+ (1− p) = 1). Thus, EU(C, θi) −EU(D, θi) is at least weakly decreasing
in θi.

To prove that h(θi) is zero for some θi, first note that ρ < 1. Since
it is dominant for type θ > 1 to not contribute in the second period and
θ ∼ unif[0, 2], the extra second period benefit for the type θ > 1 who
contributes in the first period is at most −1/2. As a result, type θ close
to 2 would not contribute in the first period. Then note that EU(C, θi) must
be positive for at least some θi = ε > 0 and equals at least 2 − 2ε, while
EU(D, θi) is at most ρ + 1 (since ρDC, ρDD are at most 1). Thus there is an
ε > 0 such that EU(C, θi) > EU(D, θi), namely when 2 − 2ε > ρ + 1 ⇐⇒
ε < (1 − ρ)/2. Thus all types θi 6 ε will want to contribute with certainty.
Furthermore, continuity of h(θi) and the facts that the utility is decreasing
in θi and that EU(C, 1) < EU(D, 1) imply that there must be a cutoff type
0 < �θ < 1 such that h(θi) is zero.



d) Suppose that i contributes in the first period if and only if θi 6 θ̂,
where θ̂ ∈ (0, 1), i = 1, 2. Derive the posterior beliefs of the players in
all information sets of the second period.

Solution. There are four different information sets (histories) in the sec-
ond period: CC,CD,DC andDD. If a player contributes in the first period
then the other player knows that the player’s type must be at or below �θ,
i.e. it is uniformly distributed on [0, �θ]. If a player does not contribute then
her value must be greater than �θ, i.e it is uniformly distributed on [�θ, 2].

e) Solve the second-period equilibrium if neither player contributed in
the first period.

Solution. First period outcome was DD, so θi ∼ unif[�θ, 2]. The utility
from contributing is, as previously, 1− θi and utility from not contributing
equals Pr(θj 6 �θDD) = (�θDD − �θ)/(2− �θ), where �θDD is the cutoff for the
second period. To find the cutoff for the second period let’s set these equal:

1− �θDD =
�θDD − �θ

2− �θ
.

Solving this yields �θDD = 2/(3 − �θ). So players contribute if θi < �θDD

and do not contribute otherwise.

f) Solve the second-period equilibrium if both players contributed in
the first period.

Solution. Similar reasoning for CC (now θi ∼ unif[0, �θ]) gives the fol-
lowing condition:

1− �θCC = Pr(θj 6 �θCC) =
�θCC
�θ

.

And solving this yields �θCC = �θ/(1+ �θ).

g) Solve the second-period equilibrium if one player contributed and
the other did not contribute in the first period.

Solution. Now the players know that the contributing player’s type
must be on [0, �θ] and the other player’s on [�θ, 2]. Let’s say that player 1 con-
tributed and player 2 did not. Since θ1 < 1, it is an equilibrium if player 1



contributes and player 2 does not contribute. Thus, there is an equilibrium
such that the player who contributed in the first period contributes and the
one that did not contribute in the first period does not contribute in the
second period.

h) Using the continuation payoffs for the second period derived above,
solve for the cutoff θ̂ such that a player with θi = θ̂ is indifferent
between contributing and not contributing in the first period. Argue
that you have derived a symmetric perfect Bayesian equilibrium of
the game.

Solution. We need to find the type who is indifferent between con-
tributing and not contributing in the first period. Writing out the indiffer-
ence condition:

EU(C, θi) = EU(D, θi) ⇐⇒

Pr(θj 6 �θ)v2(C,C) + Pr(θj > �θ)v2(C,D) = Pr(θj 6 �θ)v2(D,C) + Pr(θj > �θ)v2(D,D) ⇐⇒
�θ

2
v2(C,C) + (1−

�θ

2
)v2(C,D) =

�θ

2
v2(D,C) + (1−

�θ

2
)v2(D,D).

To simplify things, note that the cutoff type (θi = �θ) will contribute in
the second period after CD and DD only, so we can write the continuation
payoffs as

v2(C,C) = 1− �θ+ Pr(θj 6 �θCC) = 1− �θ+
1

1+ �θ
.

v2(C,D) = 2(1− �θ).

v2(D,C) = 2.

v2(D,D) = 1− �θ.

v2(C,C) follows from �θCC < �θ and v2(D,D) follows from �θDD > �θ.



Plugging the continuation payoffs in:

�θ

2
(1− �θ+

1

1+ �θ
) + (1−

�θ

2
)(2(1− �θ)) =

�θ

2
2+ (1−

�θ

2
)(1− �θ) ⇐⇒

�θ

2
(1− �θ+

1

1+ �θ
) + (1−

�θ

2
)(1− �θ) = �θ ⇐⇒

(1− �θ) +
�θ

2
(

1

1+ �θ
) = �θ ⇐⇒

4�θ2 + �θ− 2 = 0.

So, �θ =
−1+

√
33

8
<

2

3
.

i) Is θ̂ lower or higher than the corresponding equilibrium cutoff of the
one-period version of the game? Discuss the intuition for this result.

The cutoff is lower than in (a). In this equilibrium of the twice repeated
game, there is a greater incentive to free ride in the first period, because a
contributing player will also contribute in the second period with a high
probability. Thus only low cost players will contribute in the first period.

Problem 4 Consider the following common values auction. There are two bidders
whose types θi are independently drawn from a uniform distribution on [0, 100] .

The value of the object to both bidders is the sum of the types, i.e. θi + θj. The
object is offered for sale in a first price auction. Hence the payoffs depend on the
bids bi and types as follows (we ignore ties for convenience):

ui
(
bi,bj, θi, θj

)
=

{
θi + θj − bi if bi > bj,

0 otherwise.

a) Show by a direct computation that the linear strategies where bi = θi
for i = 1, 2 form a Bayesian equilibrium in this game.

Solution. Let’s calculate the best-reply of player i given that j 6= i plays
the linear strategy bj = θj. The expected utility of player i equals

Eui
(
bi,bj, θi, θj

)
= Pr

(
bi > bj

(
θj
))

(θi + E
(
θj|bi > bj

(
θj
))

− bi)

= F (bi) (θi +
1

F(bi)

∫bi
0
θjf
(
θj
)
dθj − bi)

= bi
100

(θi +
100

bi
(
∫bi
0

θj
100
dθj) − bi)

= bi
100

(θi +
100

bi

(
b2i
200

)
− bi)

= bi
100

(θi +
bi
2
− bi) =

bi
100

(θi −
bi
2
).



Taking the first order condition with regards to bi yields

1

100

(
θi −

bi
2

)
−
bi
200

= 0⇔ bi = θi.

That is it is a best response to play bi = θi against bj = θj.

b) If θi = 1, the equilibrium bid is 1, but it might seem that the expected
value of the object is 1+50=51. Why doesn’t the bidder behave more
aggressively?

Solution. The players only get the object if their bid is winning. They
should consider only the expected value of the object conditional on their
bid being the winning bid. In the equilibrium, the expected value of the
object conditional on winning equals θi + E

(
θj | bi > bj

)
= θi +

bi
2

. So,
if θi = 1, the expected value conditional on winning is 1.5 although the
unconditional expected value is 51.

c) Analyze the game above as a second price auction. Does the game
have a dominant strategy equilibrium? Find a Bayesian Nash equi-
librium of the game. (Hint: Think carefully about the event where
changing one’s own bid changes one’s payoff. What does this imply
about the bid of the other player? In symmetric equilibrium, what
does this imply about the type of the other player? Alternatively, you
may use the guess and verify method of the previous question and
verify that a linear symmetric equilibrium exists.).

Solution. In a second price auction, the payoff structure is

ui
(
bi,bj, θi, θj

)
=

{
θi + θj − bj if bi > bj,

0 otherwise.

Let’s assume that the strategies are of the form bi (θi) = aθi, where
a is a constant. Player i’s expected payoff from an arbitrary bid bi when
bj = aθi

Eui(bi,bj, θi, θj) = Pr(bi > bj)E(θi + θj − bj | bi > bj)

= (θi + E(θj − aθj | bi > aθj))
bi

100a

= (θi + (1− a) bi
2a)

bi
100a = biθi

100a + (1− a)
b2i

200a2
.



Taking the first order condition with regards to bi yields:

θi
100a

+ (1− a)
2bi

200a2
= 0 ⇐⇒ bi =

a

a− 1
θi.

And since bi = aθi we have a = 2.
There is another way to argue this by noting that changing your bid

only has an effect on payoff if you change from being a loser to being the
winner or vice versa. The switch happens at bi = bj which together with
symmetry and monotonicity implies that θi = θj. Furthermore the players
must be indifferent between winning and losing, i.e.

θi + θj − bj = 0 ⇐⇒ θi + θi − bi = 0 ⇐⇒ bi = 2θi.

Is there a dominant strategy equilibrium? No. This is because in a
common value setting like this the best response of player i always depends
on the strategy of player j. Think any other strategy for the other player,
e.g. bj = θj, and best response will be something else than bi = 2θi.

Problem 5 (Global games) Two players choose between actions "Invest" and
"Do not invest". Payoffs are as follows:

Invest Do not invest
Invest θ, θ θ− 1, 0

Do not invest 0, θ− 1 0, 0

a) Find the Nash equilibria of the game for different values of θ, when θ
is common knowledge.

Solution. The equilibrium depends on the value of θ. If θ < 0, (B,B) is
the unique NE. If θ = 0 (A,A) and (B,B) are both NE. If 0 < θ 6 1 there are
three equilibria: (A,A), (B,B) and a mixed strategy (1− θ, θ) equilibrium. If
θ > 1, (A,A) is a unique NE.

b) Suppose next that θ is not known to either of the players, but each
player observes an independent private signal x = θ+ εi, where εi is
normally distributed with mean 0 and standard deviation σ. We as-
sume here that the prior of θ is uniform on the whole real line. Such
a uniform distribution over an infinitely long interval is called "im-
proper". These distributional assumptions imply that the posterior



of θ for a player that observes signal x is a normal distribution with
mean x and standard deviation σ. What is the posterior of player i
who observed x about the signal x′ of the other player?

Solution. From player i’s perspective, player j’s signal is a sum of two
normally distributed random variables. Hence, it is also a normally dis-
tributed random variable: xj|xi ∼ N(xi, 2σ

2) (mean and variance are easy
to calculate by using standard properties of E and Var).

c) Define a cut-off strategy in this game. Show that if player −i is using
an increasing cut-off strategy (so that investment is more likely for
high signals), then the best response of i is to use a cut-off strategy.

Solution. Strategies are actions or mixtures of actions for each signal.
Actions are here simply A and B. We thus can define pure strategies as a
mapping from the set of signals to the set of actions: σi : R → {A,B}. An
increasing cutoff strategy is of the form:

si =

A if si > �si

B otherwise.

Expected payoff of playing A instead of B is increasing if the other
player is using an increasing strategy. Expectation of θ is increasing in the
player’s own signal and so is the probability that the other player plays A
(player j’s signal is increasing in the player i’s signal and player j follows an
increasing cutoff rule). Monotonicity implies that a best response is a cutoff
strategy.

d) Find a Bayesian Nash equilibrium in cut-off strategies.

Solution. We already know that the best response for an increasing
cutoff strategy is a cutoff strategy. The only task remaining is to find the
cutoff:

Eui(A| �xi) = Eui(B| �xi) = 0 ⇐⇒ E(θ| �xi) − Pr(xj < �xj| �xi) = 0 ⇐⇒ �xi = F �xi( �xj),

(3)

where F �xi is a cdf for xj conditional on xi = �xi. This implies that there is a
symmetric equilibrium where �xi = �xj = 1/2.



e) Show that the Bayesian Nash equilibrium that you derived above is
the unique strategy profile surviving the iterated deletion of strictly
dominated strategies.

Solution. We assumed that the other player follows a cutoff strategy
when finding the equilibrium in (c) and (d). Hence, the analysis above
doesn’t tell anything about the possibility of other equilibria. In addition,
asymmetric cutoff could satisfy equation 3. In order to rule out other equi-
libria we proceed by iterated deletion of strictly dominated strategies.

Deletion round 1. Playing B when xi > 1 is strictly dominated since
E(θ|xi) = xi.

Deletion round 2. First, define φ(k) such that Pr(xj > xi+k|xi) = 1/2−

φ(k). Then, take k1(σ) > 0 such that

1− k1(σ) − (1/2+ φ(k1(σ))) = 0. (4)

This is possible because φ is continuous and φ(0) = 0. Therefore, the LHS
of equation 4 is continuous and strictly positive for small k1. Playing B
when xi > 1− k1(σ) is strictly dominated:

Eui(A|xi > 1− k1(σ)) = E(θ|xi > 1− k1(σ)) − Pr(j plays B|xi > 1− k1(σ))

> 1− k1(σ) − (1/2+ φ(k1(σ))) = 0.

The last inequality follows from the first deletion round: player j plays A
always when xj > 1.

Deletion round 3. Now player i knows that player j plays A when xj >
1 − k1. Therefore, Pr(j plays A|xi > 1 − k1 − k2) > Pr(xj > 1 − k1|xi =

1 − k1 − k2) = 1/2 − φ(k2). We can use similar argumentation as above to
delete playing B when xi > 1− k1(σ) − k2(σ).

Deletion round n. We can proceed this way as long as we can find kn
satisfying:

1−

n∑
i=1

ki(σ) − (1/2+ φ(kn(σ))) = 0.

This is possible as long as
∑n−1

i=1
ki(σ) < 1/2. Note that

∑n
i=1

ki = 1/2 −

φ(kn). Hence, we will get arbitrarily close to 1/2 when kn → 0, which
happens when n→∞.

Now we have deleted all strategies that play B when xi > 1/2. Similarly,



one can delete strategies to play A when xi < 1/2. Therefore, the symmetric
equilibrium in (d) is a unique BNE.


